
Deep Learning Approaches to Malware Detection of Encrypted
Traffic in Community Networks

Lucas Carr

CRRLUC003

University of Cape Town

ABSTRACT
The ability to perform intrusion detection on a network is an im-

portant component of having reliable and secure networks. The

systems which have historically been used for intrusion detection

are increasingly ill-equipped to provide this service. This is largely

due to the widespread adoption of encryption protocols in network-

ing. Consequently, new approaches towards intrusion detection,

which do not rely on the ability to inspect payloads of traffic, are

required. Various approaches have been taken to this challenge;

however, the most promising are is present in deep learning tech-

niques. There are numerous examples of recent work using deep

learning to classify encrypted network traffic - a task closely aligned

to detecting malicious traffic. In this paper, we will review these

approaches, as well as holding a discussion of the technologies

these approaches use. More specifically, this discussion will note

an awareness around the computational and data requirements for

these approaches. We will go on to identify malware detection in

encrypted traffic as a less explored field which faces difficulty due

to an absence of high quality data.

Keywords:Malware Detection, Networks, Deep Learning, Autoen-

coders, Recurrent Neural Networks, LSTMs,

1 INTRODUCTION
The last two decades have witnessed a marked increase in use of

networks; applications of which are ubiquitous to areas of modern

life. The has been helpful, due to its ability to facilitate transac-

tions and forms of communication without geographic limitations,

enabling new connections which would otherwise be impossible.

However, adoption of networks as a vehicle to distribute informa-

tion has added new dimensions of risk: a non-trivial amount of

the information which flows through networks is security-critical:

passwords and financial transactions are examples of such. There

is an adjacent argument argument that individuals are entitled to

have their personal data be private - which would extend the list of

security-critical information to browser activity, correspondence,

and Insert another example here. The advent of malicious software,

or malware, as an attempt to leverage this increased risk for gain,

is an increasingly common occurrence.

Once malware has infected a host, or network of hosts, it is both

expensive, and difficult to remove - the cost of a single malware

attack has previously amounted to an excess of a billion dollars.

Malware, despite the amount of recent attention it is awarded, is

not a novel phenomenon. Historically, networks were able to secure

themselves against malware through the use of Network Intrusion

Detection Systems (NIDS). NIDS are intended to be able to identify

and block malware attempting to enter, or propagate through, a

network. This was achieved through the use of a broad range of

approaches; specifically, port analysis, deep packet inspection (DPI),

or statistical modelling of packet flow [22] [6].

However, more recent standard practice around networking has

made it difficult for the aforementioned detection systems to func-

tion well. Port-numbers have become a less reliable indicator of an

application type; moreover, port-obfuscation is a technique which

masks the destination port of some traffic [22]. Similarly, the adop-

tion of dynamic IP addresses have also made it difficult for NIDS,

given that NIDS rely on their ability to associate traffic from spe-

cific IPs with devices - a difficult task if the IP address changes

frequently. Furthermore, much of modern internet traffic under-

goes some encryption protocol; notably, in 2017 ≈ 75% of analyzed

malware made use of encryption [21] . Encrypted packets make

conventional DPI inspection impossible, since they require access

to the payloads contained in packets - which are now encrypted

[17]. It is important to note that these practices are useful, and in

many cases the reason for their adoption is that they offer signifi-

cant security benefits - port obfuscation, for example, can prevent

attackers from targeting specific ports for specially created attacks,

since their required ports no longer function as expected.

Consequently, novel approaches to intrusion detection, which

are capable of working within the previously mentioned network

practices, are required. Machine Learning (ML) applications are

capable of such; however, many of the existing ML-based intrusion

detection models require carefully engineered feature-selection,

which is a slow and difficult task [13] [22]. This paper aims to

explore the applications of deep learning (DL) to the problem of

intrusion detection on encrypted traffic; the motivation behind

using DL, is that some current DL methods are quite well suited

to automatic feature extraction, extendable to extracting features

from encrypted data - reducing the requirement of hand-crafted

features [23]. Moreover, DL models are capable of reasoning with a

much higher dimensionality than shallow ML counterparts - which

enables them to learn more complicated patterns [22].

Given this inability to rely on existing NIDS, such as Snort, com-

munity networks are especially vulnerable. Generally defined as

being community-run, low-resourced networks, community net-

works require lightweight tools which can protect them against

malicious traffic. It is quite common for discussions of DL to ignore,

or gloss over the performance requirements of their applications

- usually willing to sacrifice performance for accuracy in results.

The following discussion will attempt to balance these two factors

in the hope that a middle-ground can be discovered.

Literature Review Carr, 2023

The proceeding sections of this paper are organized as follows:

Section 2 will discuss concepts which are required for understand-

ing a more detailed scope and direction of this paper - expanding

on different types of malware, the difference between flow and pay-

load analysis, etc. Section 3 will discuss existing work tangential to

the scope of this paper. Section 4 will hold a thorough discussion

of different DL algorithms, providing both insight into how the

algorithms work (and why they are potentially useful for this task),

as well as existing work which uses these algorithms for similar

applications. Significant takeaways from 4, including successful

existing work, will be further expanded upon in Section 5. Lastly,

the most significant conclusions from this review, as well as a brief

plan for future work will be detailed in Section 6

2 BACKGROUND
The following section will introduce a variety of loosely related

topics which are essential to understand should one engage with

the scope of this paper. This section will not discuss approaches

towards addressing the problem of malware detection of encrypted

traffic, but rather familiarize the reader with the adjacent ideas.

2.1 Community Networks
Community Networks are defined as networks which are built and

managed by a community. These are often decentralized, poorly

resourced, and managed without industry-standard expertise [5].

Moreover, the users of these networks typically own devices which,

due to a mixture of bandwidth constraints and device age, are not

patched with the latest security updates. While community net-

works are not necessarily a more likely target for malicious traffic,

they are less equipped to manage intrusions on their network. This

is in part due to their decentralized design - a private business

network which detects an intrusion has the ability to remove and

clean infected components, this task is much more challenging in

a community network. Moreover, community networks are not

able to enforce strict guidelines around good cyber-security prac-

tices; this, coupled with un-patched security exploits, make them

vulnerable to malicious attacks [14].

2.2 Types of Malware
Malware is a fairly broad category, defining software which, with-

out permission, installs itself a computer, or network with some

malicious intention [9]. The aims of malware are vast, ranging

from theft of personal information, to government-based attacks

on foreign adversaries. Just as the aims of malware are broad, so

are the methods a piece of malware might use to accomplish its

goal [16]. Despite the many forms of malware, certain types garner

more attention - typically due to their proclivity to effect a wide

audience, or cause significant damage. We will discuss these types

of malware, specifically: worms, ransomware, and botnets, as well

as introducing significant instances of these malware [16].

Ransomware is malware which, after infecting a host, encrypts

the data stored on the system. The user is prevented from accessing

their data until - usually - some ransom is paid to the distributors

of the malware [2]. Ransomware attacks have grown in popular-

ity, as they are able to not only infect individual users, but also

shutdown institutions. WannaCry, also known as Wana Decrypt0r,

was a ransomware attack which took place in 2017, infecting mil-

lions of systems across the world. The affected systems extended to

hospital networks and government sectors [2] [9]. Although Wan-

naCry is considered to be an instance of ransomware, it also into

another category of malware, called a worm [24]. A worm is most

distinctly a piece of malware which is able to self-replicate, and

propagate through a network, infecting other connected machines

[16]. Worms can be used to slow down a networks performance,

as the worm infects more and more machines, more replications

are made and sent out across the network, causing congestion [9].

Another use for worms, as is seen in WannaCry, is to attach a

payload to the worm - this payload can be an instance of another

piece of malware - usually a virus, or Trojan [16]. Generally, mal-

ware attacks use adaptations of known malware instances; this is

helpful for detecting malware, as there will be sub-strings in the

malware payload which are present in known malware, enabling

identification [24]. However, zero-day attacks and polymorphic

worms challenge this notion - these, respectively, have no known

predecessors, or morph as they spread through a network [16] [24].

The final category of malware we will speak about are botnets; a

botnet is described as a network of infected computers, bots, which

can be taken over and controlled remotely to perform tasks [9].

Primarily, botnets are used to perform attacks on a large scale - for

instance, DDoS attacks, or massive email spam [9]. As was seenwith

ransomware, specifically, WannaCry, a botnet will usually combine

various types of malware into an attack - using a Trojan to install

the botnet on a system, and a worm to spread to other systems.

Gameover Zeus is an example of an adaptation of known malware,

a botnet called Zeus, which is peer-to-peer network, where peers

share updates with each-other and exchange information around

locations to store stolen data [3].

2.3 Payload versus Flow Analysis
As mentioned in Section 1, historically, payload analysis has been

performed using methods like DPI. These approaches examine the

contents of a packet’s payload, looking for pre-defined patterns,

or expressions. These pre-defined patterns correspond to known

applications, or malware - matching a pattern to a single packet’s

payload enables the classification of traffic [13]. The practice of

using known signatures to classify packets is acceptable when it is

reasonable to assume that a large portion of signatures are already

known - for benign traffic, this is likely the case. However, zero-day

attacks and amorphous malware challenge this assumption - both

being examples of traffic which, by design, is difficult/impossible

to have an existing signature of [8]. Additionally, as has been men-

tioned in Section 1, the popularization of encrypted payloads makes

it impossible for this type of payload analysis to function - if the

payloads are encrypted, they cannot be inspected to see if they

contain known signatures. The deep learning approaches which

are discussed in the next section do not require the payloads to be

inspected for known signatures [8] [7].

2

Literature Review Carr, 2023

Another method of traffic analysis is known as flow-based anal-

ysis. Where payload analysis examines individual packets, flow-

based analysis will group packets together, in accordance to the

network flows they are a part of [23]. A network flow is an object

consisting of multiple packets, where all the packets have the same

5-tuple of header information, {source IP, destination IP, destination
port, transport-level protocol} [1]. Section 1 introduced the concepts

of dynamic IP addresses, and port obfuscation which are increas-

ingly being incorporated into network protocols - this has made

flow analysis more challenging, since it relies on this information

to recognize flows [12]. Moreover, data-sets of encrypted network

traffic are usually in the form of raw streams of data - identify-

ing and extracting flows from this data is time consuming process

[23]. This factor, coupled with the problems faced by flow-analysis,

involving dynamic IPs and port obfuscation, make payload-based

classification a more desirable approach to identifying malware.

2.4 Gathering Data
Machine learning is a process for which it is imperative to have

high quality data; the essence of ML applications is to use training

data to teach a model something. If the training data is of a poor

standard - what exactly ’poor’ means will be discussed further on

- the training process is unlikely to produce a useful model. The

previous section looked at flow versus payload analysis; these are

the two main approaches which make up the basis of classifying

network traffic. Consequently, when using applications of machine

learning to classify network traffic, we deal with datasets made up

of flow or payload based data [23]. The properties which determine

whether a dataset is good are best realised in relation to the task

being tackled; with respect to malicious traffic detection, a large

dataset containing real-world network traffic might not be suitable

as training data due to malicious traffic being substantially less

common than benign traffic, resulting in an imbalanced dataset

[21]. Wang et al. [21] posit that training a model to detect or classify

malicious traffic requires a dataset that is (1) sufficiently large, (2)
contains a large variation of different, encrypted malware traffic,

and (3) has a good balance between benign and malicious traffic.

Unfortunately, there are no obvious datasets which meet these cri-

terion [21].

Assuming some suitable dataset has been found, a pre-processing

step is usually required. Pre-processing techniques vary based off

the methodology used. For instance, convolutional neural networks

require a uniform input size, while packet payload sizes are typi-

cally varied. A solution to this is to employ truncation or padding to

packet payloads in a dataset [21] [11]. If one were to use an LSTM,

this pre-processing step would not be required, since LSTMs accept

inputs of variable size [10].

In the literature, datasets would typically consist of raw input

data, which was then split into discrete PCAP files, this step would

be followed by a process of ’cleaning’ - which is where unnecessary

information would be removed [22]. If the task were to perform

classification based entirely off payloads, information stored in the

packet header might be removed in order to prevent the neural

network from using this information to learn [13]. As mentioned

earlier, the use of a CNN requires inputs of a uniform length. This

was achieved through deciding on an appropriate length, Lotfollahi

et al. [13]selected 1480 bytes of the payload. Packets with payload

sizes less than 1480 would be zero-padded to make up the missing

byes [12].

2.5 Evaluating Performance
There are a set of conventional metrics which have been employed

in Zhou et al. [24] and Zeng et al.’s [22] work on malware detec-

tion. These metrics are aimed at providing a comprehensive base

of coverage of evaluating an algorithm’s ability to make classifica-

tions; specifically, they are Precision, Recall, F1-score, and Accuracy.

Given,

• TP - true positive

• FP - false positive

• TN - true negative

• FN - false negative

We can then define these metrics as:

(1) Accuracy =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 +𝑇𝑁
(2) Precision =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(3) Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(4) F1-score =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

The accuracy of a model refers to the fraction of classifications

it makes which are correct; generally, this is a useful measurement

of a models performance. However, a significant limitation of this

metric is that it can produce misleading results - in the case of an

unbalanced data-set; for example, a model might always correctly

classify 𝑥 type of traffic, and incorrectly classify everything else. If

𝑥 made up 90% of the data-set, the accuracy of the model would be

misleadingly high [12].

The F1-score evaluation metric provides an alternative to this.

F1-score is a harmonic mean, calculated using Precision and Recall
- where Precision is the measure of what portion of total positive

predictions made by the model are true positive, and where Recall
is the measure of what portion of true positives your model pre-

dicted to be positive [18] [12]. Consequently, F1-score is a balanced

representation of these two measurements, represented in a single

metric, where a 1 indicates a perfect Precision and Recall score, and
a 0 when either Precision or Recall are 0.

3 RELATEDWORKS
There is a significant corpus of work on the area of using DL to

classify network traffic; as the task is further specified - for instance,

requiring that the traffic be encrypted, or include classification of

malicious traffic, the available work is reduced. In Section 4, the

discussion includes works related to the relevant DL algorithm -

to avoid redundancy, these will not be discussed in this section.

Instead, the following will look at works which are not related to

3

Literature Review Carr, 2023

any of the discussion in Section 4, but are relevant to the scope of

this paper.

BlindBox, proposed by Sherry et al. [20], is an attempt to per-

form DPI on encrypted payloads, ultimately, acting as an IDS. The

BlindBox software is a middlebox, meaning it exists on a network

path andmonitors the traffic flowing through it. Middleboxes which

came before BlindBoxwere unable to handle encrypted traffic. Since

the payloads were encrypted, the middlebox would either i) simply

not work, or, using a man-in-the-middle attack, ii) the middlebox

would decrypt the traffic to access its payload and perform conven-

tional DPI [20]. Implementations of ii have been criticized, as they

are violations of assumed privacy offered by encryption.

BlindBox works by generating a set of rules, or, encrypted sig-

natures, which are based off known, suspicious keywords [20].

Furthermore, all connections on a network which uses BlindBox,

must use a specific BlindBox HTTPS configuration. BlindBox func-

tions by essentially requiring network traffic to use two encryp-

tion schemes: the conventional SSL-encryption for the payload, as

well as a novel token encryption called DPIEnc, which encrypts

tokens [20]. When the traffic flows through the network, the pay-

load remains secure, while the BlindBox system compares its set of

encrypted signatures against the DPIEnc encrypted tokens - this

comparison is a process which is facilitated through a tool called

BlindBox Detect [20]. This approach leverages the idea that cer-

tain parts of a payload - which can be considered important for

threat detection - can be tokenized, and encrypted using an in-built

encryption scheme, enabling them to be analyzed using BlindBox.

This, strictly speaking, does maintain the integrity of the encrypted

payloads; however, the set-up process of BlindBox is substantial,

requiring every device which operates on the network to install

an compliant HTTPS configuration [20]. Moreover, BlindBox only

works on HTTPS traffic [13].

Papadogiannaki et al. [17], recognizing the difficulty NIDS have

when handling encrypted traffic, propose an approach to intrusion

detection which uses signatures based off payload sizes. This ap-

proach attempts to generate a comprehensive language of malicious

traffic signatures, where a signature is defined as a sequence of con-

secutive payload sizes; network flows are inspected to see if they

contain these signatures [17]. For example, Papadogiannaki et al.

[17] recognized that should a network flow contained a sequence of

four packets of respective sizes 22, 976, 48, 16, an intrusion attempt

of a Hydra password cracking tool has taken place. An important

aspect of this approach is the size of the signature - or, how many

payload sizes a signature refers to. If a signature is too short, it

is likely to result in false positives; false positives are particularly

undesirable for IDS since they undermine the confidence of the

system, which can lead to ignoring real intrusion events.

While most of the approaches to intrusion detection in encrypted

network traffic discussed in this paper attempt to extract features

from the encrypted payload - a challenging process, the work of

Papadogiannaki et al. [17] benefits from its simplicity: it does not

require any information from the payload, other than the payload

size. This also imposes limitations on the efficacy of the approach.

Firstly, only known malicious traffic instances can be detected -

since detection of malicious traffic requires an existing signature

[17]. Moreover, since the only feature used to detect traffic is a

sequence of payload sizes - creators of malware could quite easily

avoid detection by padding malware - increasing the payload sizes.

4 DISCUSSION OF RELEVANT DEEP
LEARNING MODELS

The following section will attempt to engage quite thoroughly with

literature concerning four distinct deep learning methodologies:

multi-layer perceptrons, convolutional neural networks, stacked

autoencoders, and recurrent neural networks. Each method will

have its own sub-section, where the initial discussion will be a

discussion of the theory behind why the method is used, and what

advantages it has over other methodologies. The discussion will

then progress to an exploration of existing implementations of the

methodology, tailored to tackling problems adjacent to malware

and encrypted traffic classification. In sum, each sub-section will

have a theoretical breakdown as well as a discussion of efficacy of

the model in existing implementations.

4.1 Multilayer Perceptrons
Multilayer perceptrons (MLPs) were one of the earliest forms of

neural networks, and as such, express concepts which are funda-

mental to the more advanced neural network which are discussed

further on. The goal of an MLP model is to, as best as possible,

emulate some function [10]. An MLP consists of an input layer, one

or more hidden layers, and an output layer - all of which are fully

connected to the next layer. The depth of a model is described as

the number of hidden layers.

Aceto et al. [1] implement two different MLPs with one and two

hidden layers - from their results, the MLPs performed considerably

worse than their DL counterparts, with F1 of ≈ 0.7. However, it

should be recognized that the inclusion of MLPs in this discussion

is not a suggestion that they are a potentially good methodology to

classify encrypted network traffic. Rather, as is proposed in Aceto et

al. [1], anMLP can provide a useful baseline performance achievable

by a shallow neural network.

4.2 Convolutional Neural Networks
Convolutional neural networks have become one of the most uti-

lized neural network architectures, initially due to their impressive

ability to perform pattern recognition on image data [15]. Applica-

tions of CNNs have had great success when working with grid-like

input data; an image should be thought of as simply a 2x2 matrix,

where the value of each element in the matrix corresponds to a

pixel. This idea can be extended to RGB images by thinking of each

element in the matrix as a vector of three numbers, corresponding

to the red, green and blue channels [10]. More recently, there have

been successful applications of CNNs with respect to network traf-

fic classification.

The architecture of a CNN can be broken into three clearly dis-

tinct stages, or layers. As is typical in most neural networks, there

4

Literature Review Carr, 2023

is an input layer, comprising of nodes which correspond to discrete

values of the overall input - for instance, pixels.

Suppose the image containsm neurons in the input layer (pixels),

and n neurons in the second layer. If each pixel were connected to

each neuron in the second layer - known as a fully connected layer

- the network becomes increasingly expensive to train, especially so

when given larger inputs [10]. Instead, CNNs implement a sparsely-

connected layer, where each input neuron has a limited number

of outgoing connections. Significantly, networks which limit the

number of outgoing connections each input neuron can have to

k, have achieved good results with k being significantly smaller

than m [10]. Figure 1 depicts a sparsely connected network, where

neuron, c3, is only connected to neurons m2, m3 and m4 - these
neurons are known as the receptive field of c3.

Figure 1: Visualization of sparsely connected layers

In the convolutional layer, an 𝑛 × 𝑛 kernel will traverse through

the input layer, producing an activation map. If the input to a CNN

is assumed to be a two dimensional matrix, with a convolutional

layer containing a 3 × 3 kernel, each element of the input will go

through a convolution. Once the kernel has traversed the entirety of

the input, a corresponding feature map would have been produced.

[15]

Figure 2: Visualization of the receptive field of a neuron

A feature map can be thought of as a representation of the ac-

tivated areas of some input data, after applying a convolution op-

eration [15]. Which areas are activated depend on the activation

function, as well as the make-up of the kernel, in shallower layers,

feature maps generally represent small concepts, or relations, in

data; for instance, a map of horizontal edges. As we go deeper into

the network, feature maps begin to represent more complete objects

- it is important to note that these are not necessarily objects which,

if we could see them, would make sense, so it is not useful to think

of feature maps as necessarily representing blocks of information

we use to identify an image [15] [10]

Figure 2 demonstrates a 2-Dimensional input - due to their appli-

cations in image processing, CNNs are often given two dimensional

grid-like input (2D-CNNs). In the case of images, it seems intu-

itively correct to use 2D-CNNs, given that elements in an image

are spatially related to one another in two dimensions. Network

traffic, however, is sequential, and, unlike images, do not require a

two dimensional representation [22].

One approach to using CNNs to process with network traffic, is

to convert the stream of data stored in a packet into a two dimen-

sional structure - essentially, forming transforming it into an image.

However, Lotfollahi et al. [13] implemented a 1D-CNN as method of

classifying encrypted network traffic. It was argued that a 1D-CNN

is more suitable than a 2D-CNN given its ability to better capture

the relationship between adjacent bytes, finding notable features in

the data stream. The first convolutional layer had a filter size of four,

a stride of three, and 200 channels. The second layer had a filter size

of five, a stride of one, and 200 channels. Their network then added a

final softmax classification layer - obtaining an F1-score of 0.98 [13].

Zhou et al. [24] discussed approaches to worm detection using

DL methods. They implemented a 1D-CNN, arguing that, although

CNNs typically have two dimensional matrices as input, network

traffic is naturally one dimensional; on top of that, using a one

dimensional vector as input data would result in decreased storage

space, and faster training times [24]. In their discussion, Zhou et

al. experimented with three different CNN architectures, with one,

two and three convolutional layers, each convolutional layer would

be followed by a pooling layer. The final pooling layer was flattened

into a one-dimensional vector, and connected to the fully connected

layer. A final softmax layer is added for classification. The CNNs -

which performed a binary classification of whether network traffic

was a worm or not - achieved F1-scores of 0.92, 0.921, and 0.924,

respectively.

Noticeable in both Lotfollahi et al. [13] and Zhou et al. [24] is the

use of a pooling layer after each convolutional layer. Pooling is a

techniquemany CNNs implement as amethod of downsampling the

output of a convolutional layer [1]. A pooling layer will implement

some sort of pooling function; most commonly, max pooling is used

- an approach which splits the data into local areas, and reduces each

segment to its maximum value [10]. The benefits of pooling are

get smaller feature maps, discarding unimportant information and

speeding up training. Additionally, dimensionality reduction caused

by pooling effectively increases the receptive field of neurons in the

layer, which helps the model generalize better, as it learns invariant

features [1].

4.3 Autoencoders
Autoencoders (AEs) are an example of an unsupervised learning

algorithm which, given some input, attempt to reconstruct this

input. An AE can be bifurcated into an encoder function, which

transforms some input into a latent vector, or code. And a decoder

function, which reconstructs the input from the encoding [10]. This

5

Literature Review Carr, 2023

explanation of AEs, as a tool which essentially are an approximation

of an identity function, is not particularly interesting. However,

AEs are not designed to recreate their input exactly, instead, the

output is intended to be an approximation of the input - with loss

being minimized.

Figure 3: Input 𝑥 , encoded to ℎ, decoded to 𝑟

The significant aspect of AEs appears when looking at the encod-

ing process. The latent vector,ℎ, can be thought of as having a much

lower dimensionality than the input, 𝑥 . This encourages the encod-

ing function to learn only the seminal features of the input data,

in order to construct an approximation of it. This results not only

in dimensionality reduction, but also automatic, seminal feature

identification. The learning process uses a loss function which min-

imizes the reconstruction error - which is defined as the divergence

between 𝑔(ℎ) and 𝑥 [10]. If ℎ is given too large a dimensionality, the

algorithm fails to extract only the seminal features of the input, as

the only learning motivation is minimizing the reconstruction error.

Sparse autoencoders are an attempt to address this issue; they

function similarly to traditional AEs, but with an additional sparsity

penalty, Ω(ℎ). Sparsity loosely relates to neurons being ’inactive’

more than not. The algorithm now learns by minimizing both the

reconstruction error, and the sparsity penalty [10].

Another variation of AEs is known as a stacked autoencoder

(SAE) - these are essentially a sequence of AEs, where the output

from one AE is used as input into the next one in sequence. Lotfol-

lahi et al. implemented a five-layer SAE, where layers were made

up of 400, 300, 200, 100 and 50 neurons, respectively, with a final

softmax layer added for classification [13]. This decreasing size of

each layer is suggests that the capacity of the encoder was reduced,

in an attempt to encourage it to only learn the seminal features of

its input data. There was, however, no mention of enforcing sparsity

among the layers of the network - consequently, it was assumed

that there was no inclusion of sparse AEs within this network. The

results showed that their SAE was successfully able to identify the

related application of a packet - achieving a weighted average F1

score of 0.92 [13]. Notably, the model used encrypted payloads of

packets as training data - a divergence from the norm of traffic

classification, which uses traffic flows.

One of the risks of reducing the dimensionality of the hidden

layer of an AE - which is not necessarily present in Lotfollahi et al.

- is that the dimensionality is reduced too significantly, preventing

the model from encoding the necessary features into the hidden

layer(s). Using a sparse autoencoder mitigates this risk, since it

is not physically reducing the dimensions of the input - rather it

discourages unnecessary activation of neurons in a balancing act

between reducing reconstruction error, and enforcing sparsity [10].

Zeng et al. [22] included an SAE in their three-model classifier,

DeepFullRange. Their SAE had two layers; the first layer had 900

input neurons, fully connected to encoder of 1000 neurons, this

encoding was then connected to a second encoder of 1500 neurons.

Finally, a softmax layer was added for classification. Interestingly,

this approach appears to misaligned with the earlier discussion on

limiting the capacity of encoders to encourage the model to only

learn the important features of the input data. There paper offered

little justification of their SAE design; one explanation for why

their encoders had such a high capacity might be that they applied

a dropout on each layer - however, dropouts are intended to act

as a prevention against overfitting, and not as a tool to encourage

sparsity. It is perhaps worth noting that the SAE in this paper was

the model which performed the worst (relative to a CNN and LSTM)

[22].

4.4 LSTMs / Recurrent Neural networks
A recurrent neural network (RNN) is a particular type of neural

network, geared towards handling sequential input data, which

implements feedback loops in its hidden layer(s) [19]. These loops

enable information which has flown through the network to persist,

accessible to future iterations of the forward-pass [10]. In other

words, an RNN remembers the information which flows through

it, and uses this memory to affect future data. The motivation for

this design is the idea that past - in terms of prior elements in a

sequence - information is likely to be relevant to understanding

current information [10]. This notion becomes quite apparent if

we think about how we might predict the next character, given the

sequence a, b, c, d, e - we would look at the sequence, recognize

that it is the alphabet, and fill in what should follow after ’e’. This is
an example of recent memory being useful for reasoning. However,

consider a paragraph of text, starting with "I am going on holiday
and don’t have accommodation, several unrelated sentences, and

ending with "I need to book my" , we should might recognize

that the next word should probably be accommodation [10]. The

principle is the same as the previous example: past information is

useful for current reasoning. Only the useful piece of past informa-

tion is, temporarily, much further away. This notion of temporal

relationships between elements in a sequence with large intervals is

an area where, due to their use of gradient descent, RNNs struggle

[4] [19].

A solution to this problem, sometimes referred to as ’vanishing

gradient problem’, is to use Long Short-Term Memory (LSTM) .

These are a variant on traditional RNNs which introduce the idea of

a memory block [19]. The memory block is responsible for storing

past information, and has an internal state. Where an RNN node

uses an input value combined with a recurrent connection as input

to its activation function, an LSTM cell will additionally include the

internal state in its calculations. The state will then be updated, ac-

cording the output of the activation function. How much influence

the state has on the cell, how much it is updated by the output of

the cell, and what persists in the memory block, is determined by

parameters called gates - specifically, an input gate, and output gate

and forget gate [19]. It is this control of the flow of information,

offered by the gates, which enable it to avoid the vanishing gradient

6

Literature Review Carr, 2023

problem.

An application of LSTMs to classify network traffic was done

by Lim et al. [12], where two types of networks were evaluated: a

multi-layer LSTM and a combinatory network architecture, com-

prising of a CNN + LSTM. This approach aimed to use payloads of

traffic from a single flow, transformed into image data, as training

data; the justification for transformation was that historically, deep

learning models have had success classifying image data. Both the

3-layer LSTM and CNN+LSTM would take an input of a dataset

of image-converted payloads from a unique flow, where experi-

ments were run using different flow sizes, and different payload

sizes. The results indicated that the both multi-layer LSTM and the

CNN+LSTM benefited from larger flows, and larger payloads; the

multi-layer LSTM outperformed the CNN+LSTM in every instance,

with their best F1-scores being 0.99575 and 0.9886, respectively.

However, it was noted that as the payload and flow sizes increased,

the difference in F1-score decreased. It was concluded that addi-

tion of a CNN - used for feature extraction - was unnecessary, and

that the unchanged payloads, used in the multi-layer LSTM, were

more suitable suitable for classification using an LSTM. However,

it should be acknowledged that these experiments operated on un-

encrypted payload data - the introduction of of encrypted payloads

may necessitate the use of the feature extraction capabilities of a

CNN.

In their paper,Deep-Full-Range, Zeng et al. [22] also implemented

amulti-layer LSTM - alongside a CNN and SAE, which are discussed

in 4.2 and 4.3, respectively. The LSTM was a three-layered model,

where each layer had 256 LSTM cells and made use of dropout -

a process whereby random components of a network are dropped
during a training instance, in order to combat over-fitting [10].

The only F1-score provided, 0.9987, is an average across the three

algorithms discussed in the paper, which makes it difficult to draw

conclusions about the performance of the LSTM. However, Zeng et

al. discussed the procedures they took to ensure that their dataset

was balanced, and provided the accuracy ratings for their LSTMs

with L1 and L2 regularization applied - which were 99.22% and

97.33%, respectively. This is useful, as it affirms that there is merit

to the notion of using LSTMs to classify encrypted network traffic -

and, by extension, detect malware in encrypted network traffic.

5 DISCUSSION
There exists a substantial amount of work which engage with ideas

around using DL techniques to perform network classification.

We considered network classification to be a broad term, which

included more specific fields like: encrypted traffic classification,

malicious traffic identification, and classification of malicious traffic

which is encrypted. These areas - bar the last one - each have a

significant amount of work to draw on. Specifically, the success of

approaches seen in Zeng et al. [22] and Aceto et al. [1] - which are

both applications of DL to classify encrypted network traffic - serve

as an indication that DL is well suited to overcome the challenge

posed by encrypted data on classification problems.

The initial method introduced was a simple MLP - as described

in Section 4.1, the inclusion of MLPs was not out of an expectation

that they might perform this task well; but rather to produce a base-

line of what a shallow network might be capable of achieving. This

simple model would then offer a starting point for comparisons

with more elaborate methodologies. Of these, CNNs appeared to

be the most widely used approach. However, engaging with their

implementation produced the insight that many of these CNNs di-

verged from the conventional approach - which is to use a grid-like

two-dimensional matrix as an input. Instead, CNNs used for traffic

classification implemented a one dimensional vector [13] [24] [22].

This decision being justified for the reasons that: a one dimensional

vector better represented the input data of a packets payload, and

the argued performance benefits, found in Zhou et al. [24]. LSTMs

were introduced as an answer to the vanishing gradient problem

which exists in more conventional recurrent networks; Zeng et

al, [22] implemented an LSTM which classified encrypted traffic,

alongside a CNN and SAE - the LSTM was marginally less effec-

tive than its counterparts. However, Lim et al, [12] proposed an

architecture consisting of a CNN which feeds into an LSTM with

encouraging results. SAEs were another, less common approach

which generally produced

There was, unfortunately, a noticeable lack of work dealing

specifically with the field of intrusion detection in encrypted net-

work traffic. This is slightly concerning, given that this is essentially

the aim of this work; however, the noted success of DL applications

to classify benign encrypted network traffic, as well as the success

of DL applications to identify unencrypted malicious traffic, sug-

gests that the reason for an absence of literature in this field is not

necessarily due to it being intrinsically difficult problem to tackle.

Rather, as was discussed in Section 2.4, it is more likely an indi-

cation of an absence of high quality training data [21]. Moreover,

the shortcomings of the approaches discussed in Section 3 suggest

that there remains a requirement for a effective way to perform

intrusion detection on encrypted network traffic.

Given this insight, and reconciling the notion that, in order to

gather good quality training data, different datasets may need to

merged, a decision was made to focus more attention onto payload-

based approaches, over flow or mixed approaches. In the case where

reliable, clean training data is scarce, flow-based analysis is consid-

erably more challenging, as it requires more pre-processing steps

to create adequate training data.

6 CONCLUSION
There has always been a need for networks to be secure and reliable;

frequently, they are used as a method of communicating sensitive

information. Historical techniques to ensure this, like traditional

NIDS, are quickly becoming ineffective at fulfilling this role. This is

due to the changes in network protocols - specifically, encryption

-,which alter the data a NIDS is able to process. Consequently, more

effective, novel solutions are required.

7

Literature Review Carr, 2023

In this review, an initial attempt was made to introduce topics

peripheral to the core problem. The idea was that understanding

these areas first, would be beneficial to one’s engagement with

the main discussion of this paper. This periphery discussion intro-

duced the concept of community networks. Addressing how, due

to certain defining traits - such as their generally low-resourced

infrastructure - community networks may be considered more vul-

nerable to malicious attacks. Proceeding this, an exploration of

the different types of malware, their respective strengths, and how

multiple instances of malware might be used in conjunction with

one another. This was not an exhaustive discussion of the types of

malware, but rather sought to provide a reasonably comprehensive

introduction into important aspects of malware.

The peripheral discussion was followed by a section which aimed

to introduce related works - importantly, the papers discussed in

this section were related works that did not make use of DL method-

ologies, since these would be discussed in tandem with an analysis

of the DL methodologies. It was recognized that the approaches

presented in this section were ultimately too limited to be consid-

ered viable forms of intrusion detection on encrypted traffic.

A promising approach to this area of research is found in the use

of DL methodologies. An exploration of four distinct approaches

- MLPs, CNNs, SAEs, and LSTM - was done, which involved an

attempt to explain how each of these approaches functioned, as

well as detailing existing experimentation using these technologies.

From this, it was found that CNNs and LSTMs appeared to be the

most promising technologies for the task of classifying encrypted

traffic. Moreover, a variation of these approaches which sought

to combine CNNs and LSTMs into a single architecture yielded

promising results.

It was noted, however, that the literature discussed in this paper

largely focused on either detecting unencrypted malware traffic,

or, classifying encrypted traffic without a focus on malware. Al-

though this is unfortunate, it was not interpreted as a sign that i)
the research topic was unimportant, or that ii) the topic was too
challenging to produce seminal contributions. Rather, a possible

explanation for the scarcity of literature on this exact topic was

that the required datasets are rare.

Moving forward, the most significant hurdle will be to find, or

create a suitable dataset for the task. After this, a decision will

be made around whether to use payload or flow as an input to

the DL methods; this decision will determine the subsequent pre-

processing steps on the dataset. Once this is done, and the dataset

has been processed, cleaned and labelled, we will begin experiment-

ing with variations DL algorithms, using the findings from this

review.

REFERENCES
[1] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio Pescapé.

2019. Mobile Encrypted Traffic Classification Using Deep Learning: Experimental

Evaluation, Lessons Learned, and Challenges. IEEE Transactions on Network and
Service Management 16, 2 (2019), 445–458. https://doi.org/10.1109/TNSM.2019.

2899085

[2] Maxat Akbanov, Vassilios G Vassilakis, and Michael D Logothetis. 2019. Wan-

naCry ransomware: Analysis of infection, persistence, recovery prevention and

propagation mechanisms. Journal of Telecommunications and Information Tech-
nology 1 (2019), 113–124.

[3] Dennis Andriesse, Christian Rossow, Brett Stone-Gross, Daniel Plohmann, and

Herbert Bos. 2013. Highly resilient peer-to-peer botnets are here: An analysis

of Gameover Zeus. In 2013 8th International Conference on Malicious and Un-
wanted Software: "The Americas" (MALWARE). 116–123. https://doi.org/10.1109/
MALWARE.2013.6703693

[4] Y. Bengio, P. Simard, and P. Frasconi. 1994. Learning long-term dependencies

with gradient descent is difficult. IEEE Transactions on Neural Networks 5, 2 (1994),
157–166. https://doi.org/10.1109/72.279181

[5] Bart Braem, Chris Blondia, Christoph Barz, Henning Rogge, Felix Freitag, Leandro

Navarro, Joseph Bonicioli, Stavros Papathanasiou, Pau Escrich, Roger Baig Viñas,

Aaron L. Kaplan, Axel Neumann, Ivan Vilata i Balaguer, Blaine Tatum, and

Malcolm Matson. 2013. A Case for Research with and on Community Networks.

43, 3 (jul 2013), 68–73. https://doi.org/10.1145/2500098.2500108

[6] Qiumei Cheng, Chunming Wu, Haifeng Zhou, Dezhang Kong, Dong Zhang,

Junchi Xing, and Wei Ruan. 2021. Machine learning based malicious payload

identification in software-defined networking. Journal of Network and Computer
Applications 192 (2021), 103186.

[7] Qiumei Cheng, Chunming Wu, Haifeng Zhou, Dezhang Kong, Dong Zhang,

Junchi Xing, and Wei Ruan. 2021. Machine learning based malicious payload

identification in software-defined networking. Journal of Network and Computer
Applications 192 (2021), 103186.

[8] Ronald Cheng and Gavin Watson. 2018. D2pi: Identifying malware through deep
packet inspection with deep learning. Technical Report. Tech. Rep.

[9] Harjeevan Gill. Malware: Types, Analysis and Classifications. (????).

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT

Press. http://www.deeplearningbook.org.

[11] Hyun-Kyo Lim, Ju-Bong Kim, Joo-Seong Heo, Kwihoon Kim, Yong-Geun Hong,

and Youn-Hee Han. 2019. Packet-based Network Traffic Classification Using

Deep Learning. In 2019 International Conference on Artificial Intelligence in Infor-
mation and Communication (ICAIIC). 046–051. https://doi.org/10.1109/ICAIIC.
2019.8669045

[12] Hyun-Kyo Lim, Ju-Bong Kim, Kwihoon Kim, Yong-Geun Hong, and Youn-Hee

Han. 2019. Payload-based traffic classification using multi-layer lstm in software

defined networks. Applied Sciences 9, 12 (2019), 2550.
[13] Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hossein Zade, and

Mohammdsadegh Saberian. 2020. Deep packet: A novel approach for encrypted

traffic classification using deep learning. Soft Computing 24, 3 (2020), 1999–2012.

[14] Panagiota Micholia, Merkouris Karaliopoulos, Iordanis Koutsopoulos, Leandro

Navarro, Roger Baig Vias, Dimitris Boucas, Maria Michalis, and Panayotis Anto-

niadis. 2018. Community Networks and Sustainability: A Survey of Perceptions,

Practices, and Proposed Solutions. IEEE Communications Surveys Tutorials 20, 4
(2018), 3581–3606. https://doi.org/10.1109/COMST.2018.2817686

[15] Keiron O’Shea and Ryan Nash. 2015. An introduction to convolutional neural

networks. arXiv preprint arXiv:1511.08458 (2015).
[16] Nagababu Pachhala, S. Jothilakshmi, and Bhanu Prakash Battula. 2021. A Com-

prehensive Survey on Identification of Malware Types and Malware Classi-

fication Using Machine Learning Techniques. In 2021 2nd International Con-
ference on Smart Electronics and Communication (ICOSEC). 1207–1214. https:

//doi.org/10.1109/ICOSEC51865.2021.9591763

[17] Eva Papadogiannaki, Giorgos Tsirantonakis, and Sotiris Ioannidis. 2022. Network

Intrusion Detection in Encrypted Traffic. In 2022 IEEE Conference on Dependable
and Secure Computing (DSC). 1–8. https://doi.org/10.1109/DSC54232.2022.9888942

[18] David M. W. Powers. 2020. Evaluation: from precision, recall and F-measure to

ROC, informedness, markedness and correlation. CoRR abs/2010.16061 (2020).

arXiv:2010.16061 https://arxiv.org/abs/2010.16061

[19] Hasim Sak, Andrew W. Senior, and Françoise Beaufays. 2014. Long short-term

memory recurrent neural network architectures for large scale acoustic modeling.

In INTERSPEECH. 338–342.
[20] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. 2015. Blind-

box: Deep packet inspection over encrypted traffic. In Proceedings of the 2015
ACM conference on special interest group on data communication. 213–226.

[21] Zihao Wang, Kar Wai Fok, and Vrizlynn LL Thing. 2022. Machine learning for

encrypted malicious traffic detection: Approaches, datasets and comparative

study. Computers & Security 113 (2022), 102542.

[22] Yi Zeng, Huaxi Gu, Wenting Wei, and Yantao Guo. 2019. 𝐷𝑒𝑒𝑝 − 𝐹𝑢𝑙𝑙 − 𝑅𝑎𝑛𝑔𝑒

: A Deep Learning Based Network Encrypted Traffic Classification and Intrusion

Detection Framework. IEEE Access 7 (2019), 45182–45190. https://doi.org/10.

1109/ACCESS.2019.2908225

[23] Weiping Zheng, Jianhao Zhong, Qizhi Zhang, and Gansen Zhao. 2022. MTT:

an efficient model for encrypted network traffic classification using multi-task

transformer. Applied Intelligence 52, 9 (2022), 10741–10756.
[24] Hanxun Zhou, Yeshuai Hu, Xinlin Yang, Hong Pan, Wei Guo, and Cliff C. Zou.

2020. A Worm Detection System Based on Deep Learning. IEEE Access 8 (2020),
205444–205454. https://doi.org/10.1109/ACCESS.2020.3023434

8

https://doi.org/10.1109/TNSM.2019.2899085
https://doi.org/10.1109/TNSM.2019.2899085
https://doi.org/10.1109/MALWARE.2013.6703693
https://doi.org/10.1109/MALWARE.2013.6703693
https://doi.org/10.1109/72.279181
https://doi.org/10.1145/2500098.2500108
http://www.deeplearningbook.org
https://doi.org/10.1109/ICAIIC.2019.8669045
https://doi.org/10.1109/ICAIIC.2019.8669045
https://doi.org/10.1109/COMST.2018.2817686
https://doi.org/10.1109/ICOSEC51865.2021.9591763
https://doi.org/10.1109/ICOSEC51865.2021.9591763
https://doi.org/10.1109/DSC54232.2022.9888942
http://arxiv.org/abs/2010.16061
https://arxiv.org/abs/2010.16061
https://doi.org/10.1109/ACCESS.2019.2908225
https://doi.org/10.1109/ACCESS.2019.2908225
https://doi.org/10.1109/ACCESS.2020.3023434

	Abstract
	1 Introduction
	2 Background
	2.1 Community Networks
	2.2 Types of Malware
	2.3 Payload versus Flow Analysis
	2.4 Gathering Data
	2.5 Evaluating Performance

	3 Related Works
	4 Discussion of Relevant Deep Learning Models
	4.1 Multilayer Perceptrons
	4.2 Convolutional Neural Networks
	4.3 Autoencoders
	4.4 LSTMs / Recurrent Neural networks

	5 Discussion
	6 Conclusion
	References

